
Penetration Test Report
Civilized Discourse Construction Kit, Inc.
Retest of External Network and Web Application

October 5, 2023

ATTESTATION & COMPLIANCE SERVICES • PROPRIETARY & CONFIDENTIAL
UNAUTHORIZED USE, REPRODUCTION OR DISTRIBUTION OF THIS REPORT, IN WHOLE OR IN PART, IS STRICTLY PROHIBITED.

3

5

8

10

12

13

Contents

Executive Summary

Assessment Scope

Methodology

Attack Path Narrative

Risk Ratings

Issues Identified

1

 Section 1

Executive
Summary ​

2

Prepared For

Civilized Discourse

Construction Kit, Inc.

8 The Green Suite #8383

Dover, DE 19901

Executive Summary
Civilized Discourse Construction Kit, Inc. (“Discourse”) contracted with Schellman Compliance, LLC

(“Schellman”) to perform a penetration test of the Discourse platform and external network. Testing

occurred within the staging environment between August 8, 2023, and August 21, 2023. This assessment

focused on testing the effectiveness of controls implemented to secure the staging environment by

identifying and exploiting vulnerabilities, validating their risk, and providing recommendations for

remediation.

Four (4) moderate risk issues were discovered while performing the subsequent tests during this

engagement:

External Network Penetration Testing

Web Application Penetration Testing

A retest of all initially identified findings occurred on October 5, 2023. Upon completing the retest, all

findings were determined to be remediated. These results are summarized below and individual retest

observations have been noted within the finding details pages.

Summary Table

The following table lists the findings from the assessment, along with their risk rating and a unique

identifier.

Identifier Finding Risk Rating Retest Result

APP-01 Stored Cross-Site Scripting - E-mail Preview Summary (Text) Moderate Remediated

APP-02 Stored Cross-Site Scripting - E-mail Preview Summary (HTML) Moderate Remediated

APP-03 Server-Side Request Forgery - Discourse Jira Plugin Moderate Remediated

APP-04 Stored Cross-Site Scripting - Message Encryption Plugin Moderate Remediated

Assumptions & Limitations
All testing activities were conducted as a point-in-time assessment. As such, the vulnerabilities reflected

in this report may not indicate vulnerabilities that existed before or after the test execution window.

3 E X E C U T I V E S U M M A R Y P R O P R I E T A R Y & C O N F I D E N T I A L

 Section 2

Assessment
Scope ​

4

Assessment Scope
Prior to any testing activities, Discourse provided a list of IP addresses as the scope of the assessment. Port scanning was performed on all TCP

ports and the top 100 UDP ports. Schellman conducted testing of only the in-scope resources as defined below.

External Network

External open ports and services

Description IP Address Open Ports

sjc4 External Network 74.82.16.131 22 TCP

sjc4 External Network 74.82.16.132 22, 443 TCP

sjc4 External Network 74.82.16.133 22, 443 TCP

sjc4 External Network 74.82.16.138 80, 443 TCP

sjc4 External Network 74.82.16.139 80, 443 TCP

sjc4 External Network 74.82.16.140 80, 443 TCP

sjc4 External Network 74.82.16.141 80, 443 TCP

sjc4 External Network 74.82.16.142 80, 443 TCP

sjc4 External Network 74.82.16.143 80, 443 TCP

sjc4 External Network 74.82.16.144 80, 443 TCP

sjc4 External Network 74.82.16.145 80, 443 TCP

sjc4 External Network 74.82.16.146 80, 443 TCP

sjc4 External Network 74.82.16.147 80, 443 TCP

sjc4 External Network 74.82.16.153 25 TCP

sjc4 External Network 74.82.16.154 25 TCP

sjc4 External Network 2602:fd3f:0:ff04::83 22 TCP

sjc4 External Network 2602:fd3f:0:ff04::84 22 TCP

sjc4 External Network 2602:fd3f:0:ff04::85 22 TCP

sjc4 External Network 2602:fd3f:0:ff04::8a 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::8b 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::8c 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::8d 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::8e 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::8f 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::90 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::91 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::92 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::93 80, 443 TCP

sjc4 External Network 2602:fd3f:0:ff04::99 25 TCP

sjc4 External Network 2602:fd3f:0:ff04::9a 25 TCP

sjc4 Internal Network 2602:fd3f:0:400::ff 5000 TCP

5 A S S E S S M E N T S C O P E P R O P R I E T A R Y & C O N F I D E N T I A L

Web Application
Schellman was provided access to two (2) tenants across one (1) web application, which were accessible from the following URLs:

Web application and open ports

Web Application URL Open Ports

Discourse Tenant 1 https://aspt2023t1.staged-by-discourse.com 80, 443 TCP

Discourse Tenant 2 https://aspt2023t2.staged-by-discourse.com 80, 443 TCP

Web Application Credentials
Discourse created four (4) initial test accounts to access the applications. Schellman provisioned three (3) additional user accounts to assess the

application in the context of user-defined roles. The following table lists the accounts used during testing:

Accounts used during testing

Application Account Name Role Created By

Discourse Tenant 1 alpha.discourse@redschell.com Administrator Discourse

Discourse Tenant 1 bravo.discourse@redschell.com Moderator Discourse

Discourse Tenant 1 echo.discourse@redschell.com User Schellman

Discourse Tenant 2 charlie.discourse@blueschell.com Administrator Discourse

Discourse Tenant 2 delta.discourse@blueschell.com Moderator Discourse

Discourse Tenant 2 foxtrot.discourse@blueschell.com User Schellman

Discourse Tenant 2 hotel.discourse@blueschell.com User Schellman

6 A S S E S S M E N T S C O P E P R O P R I E T A R Y & C O N F I D E N T I A L

 Section 3

Methodology ​

7

Methodology
Schellmanʼs approach to penetration testing is based on the experience of a team that has been conducting tests and evaluating their results for

over two decades. Schellman understands how breaches occur, how corporate requirements may affect a test, and the need for a quality

deliverable which is applicable to executive, security, and system administration teams. Based on this information, a framework was built to

ensure the goals and objectives of a quality assessment. The framework leverages the standards available in the public domain, including, but

not limited to:

National Institute of Standards and Technology (NIST) Special Publication (SP) 800-115

Open Web Application Security Project® (OWASP®) Web Security Testing Guide (WSTG)

The MITRE Corporation ATT&CK® Matrix for Enterprise

External Network
A list of publicly accessible hosts was provided by

Discourse. With that information, the following steps

were performed from the perspective of an

unauthenticated adversary on the Internet.

Enumerate open services on all in-scope hosts✓

Perform automated vulnerability scans✓

Manually review each service for known vulnerabilities and
security misconfigurations

✓

Verify and exploit found vulnerabilities✓

Attempt to escalate privileges and compromise the
supporting infrastructure

✓

Web Application
As an authenticated adversary of the application,

Schellman attempted to gain access to the servers and

infrastructure supporting the environment. Two (2)

separate tenant environments were provided to test the

web application attack vectors. The following steps were

taken while attempting to breach the web applicationʼs

protections and access the underlying infrastructure.

Configure a local proxy to intercept HTTP(S) traffic✓

Determine the target application footprint✓

Map available web application functionality✓

Analyze client-side code (e.g. HTML and JavaScript) for
potential attack vectors

✓

Manually search for and exploit vulnerabilities in the OWASP
WSTG

✓

Attempt to compromise the environment supporting the
application

✓

8 M E T H O D O L O G Y P R O P R I E T A R Y & C O N F I D E N T I A L

 Section 4

Assessment
Results ​

9

Attack Path Narrative
The following narrative details the major components of Schellmanʼs attack path in pursuit of testing objectives. This attack path is not

inclusive of all testing activities, but instead serves to summarize the primary steps taken to complete the assessment.

External Network

Schellman performed passive and active reconnaissance of Discourse's externally-facing hosts. This consisted of port, service, and vulnerability

scanning of the in-scope hosts. Identified ports with open web services were targeted with fuzzing tools in an attempt to identify hidden

content. Schellman then reviewed Discourse's core software and in-scope plugins' public GitHub repositories for sensitive information such as

hardcoded credentials and API keys. Finally, the hosts' DNS records were assessed for security misconfigurations such as missing DMARC

records. While discoursemail.com was found to have the DMARC policy set to "quarantine", Discourse had previously accepted this risk as a

requirement for its operations.

Web Application

The web application assessment began with active reconnaissance, which consisted of manually browsing links inside the application while

using an HTTP interception proxy. In doing so, an application map was created to conduct testing via a quantitative approach and to mark any

broken or out-of-scope functionality. A combination of built-in scanning tools and plugins were used to discover information about the

application's functionality and supporting infrastructure, including points of user input and the technology stack used to build the application.

Reconnaissance was completed by compiling a list of names and versions of third-party libraries for later research. The Discourse platform was

then assessed for vulnerabilities in the OWASP Web Security Testing Guide (WSTG) and issues that could lead to a compromise of the

infrastructure supporting it. Four (4) moderate risk issues were identified during the web application penetration test.

Multiple web-based vulnerability scanners were configured and run against the identified routes and endpoints while manual testing occurred.

Core application functionality and new features were prioritized as testing occurred within a limited engagement window. The focus and

precedence of further manual test efforts were then determined by matching potential attack vectors to application functionality and

evaluating the impact and likelihood of exploitation. These endpoints were assessed by sending a base set of payloads and manually reviewing

their HTTP responses for indications of exploitability. Examples of this include changes in the HTTP response code, content length, content

type, and response delivery time. This process was refined throughout the testing window by studying the expected behavior of individual

functions and identifying any deviations that resulted from manipulating input data. Iteratively, the payloads were further tailored to target the

identified technology stack and distinctive system characteristics.

Discourse is an open-source Internet forum software that enables users to establish online communities with features tailored for discussing

various topics and having meaningful interactions with other users. Generally speaking, forum software is deployed with the intent of public

access, allowing anyone to sign up with an account and start interacting with the community. With this in mind, a focus was placed on testing

for injection based attacks from a low privileged account that could potentially compromise administrative users. Two (2) different methods of

injecting malicious client-side code from a low privileged user were identified within the "E-mail Preview Summary" admin area. The first dealt

with injecting malicious code into the title of a "Topic", which would then execute when the admin user viewed the relevant application content

(APP-01). The second dealt with the "Events" experimental feature, allowing a similar attack but through injecting into the name of an "Event"

(APP-02).

The core forum software is expandable with a variety of plugins that add features such as different authentication methods and message

encryption. Discourse provided a list of in-scope plugins to test as part of the assessment. These plugins were preinstalled into the test

environments and could be enabled and disabled via a toggle switch. One (1) additional instance of XSS was identified within the message

encryption plugin. This allowed a low privileged user to privately message another user, including administrators, and include malicious client-

side code in the message title. The malicious client-side code was then executed when the message was decrypted and read by the receiving

user (APP-04). Plugins interacting with third-party services, such as Atlassian Jira or Salesforce, were code reviewed as well as dynamically

10 A T T A C K P A T H N A R R A T I V E P R O P R I E T A R Y & C O N F I D E N T I A L

tested to uncover vulnerabilities. While assessing the interactions between a Jira server and the Discourse Jira plugin, it was observed that a

lower privileged user could manipulate the path to the Jira API in an arbitrary manner from the "Attach Issue" feature. In addition, the

administrator user could perform server-side request forgery attacks against the Discourse internal infrastructure, leading to internal network

enumeration (APP-03).

Prior to testing, Schellman was given access to two (2) Discourse tenants representing different organizations. As an authenticated user of the

first tenant (Tenant 1), Schellman attempted to access or modify data belonging to the secondary tenant (Tenant 2). This was accomplished by

attempting to identify authentication, authorization, and business logic vulnerabilities throughout the application. No vulnerabilities were

identified during this attack vector and Schellman was unable to access or modify data from one tenant to another.

11 A T T A C K P A T H N A R R A T I V E P R O P R I E T A R Y & C O N F I D E N T I A L

Risk Ratings
How Risk is Calculated
Schellman assigns a risk rating to each vulnerability based on the likelihood and impact of the exploit. The risk ratings are based on the

guidelines published in NIST SP 800-30 Rev. 1. The table below provides an overview of how the overall risk rating is determined and a definition

of each category can be found below.

Risk mapping matrix

 Low Impact Moderate Impact High Impact

High Likelihood L O W M O D E R AT E H I G H

Moderate Likelihood L O W M O D E R AT E M O D E R AT E

Low Likelihood L O W L O W L O W

Likelihood and Impact Explained
Likelihood - The probability the vulnerability can be exploited, considering the attacker’s skill level and access.

High – The attacker requires no specific motivation or special skills to exploit, and the vulnerability is easily accessible. Examples include
well understood vulnerabilities and those with functional or proof-of-concepts available.

Moderate – The attacker requires some motivation and experience; additionally, the vulnerability may be restricted by controls in the
environment. Examples include vulnerabilities requiring specific and non-default settings enabled and those in environments that are
accessible with two-factor authentication.

Low – The attacker requires specialized skills and is highly motivated; additionally, the vulnerability requires enhanced levels of access to
exploit. Vulnerabilities that are theoretically possible, or likely only exploitable by Nation States are examples.

Impact – The potential harm done to the organization based on the vulnerability.

High – Exploitation of the finding results in a serious compromise to the system and will likely disrupt business operations, potentially for
an extended period. Examples include remote code execution resulting in administrative access on the host and SQL injections disclosing
extensive amounts of sensitive data.

Moderate – Exploitation of the finding results in significant compromise to the system and may disrupt business operations in the short
term. Examples include local privilege escalation attacks and incubated vulnerabilities that require concatenation to fully exploit.

Low – Exploitation of the finding results in no additional access to the system and would not cause a disruption to business operations.
Examples include default SNMP community strings and many SSL vulnerabilities.

12 R I S K R A T I N G S P R O P R I E T A R Y & C O N F I D E N T I A L

Issues Identified
Summary Table

The following table lists the findings from the assessment, along with their risk rating and a unique identifier.

Identifier Finding Risk Rating Retest Result

APP-01 Stored Cross-Site Scripting - E-mail Preview Summary (Text) Moderate Remediated

APP-02 Stored Cross-Site Scripting - E-mail Preview Summary (HTML) Moderate Remediated

APP-03 Server-Side Request Forgery - Discourse Jira Plugin Moderate Remediated

APP-04 Stored Cross-Site Scripting - Message Encryption Plugin Moderate Remediated

13 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

APP-01 Stored Cross-Site Scripting - E-mail Preview Summary (Text)

Identifier APP-01 Impact High Category Input Validation

Attack Vector Web Application Likelihood Moderate Risk Rating Moderate

Description

The "text" section in the "Emails" >> "Preview Summary" admin page was vulnerable to stored cross-site scripting (XSS) attacks. Stored XSS

vulnerabilities arise when user input is stored and later embedded into the application's responses in an unsafe way. A JavaScript payload

saved in either the "Title" or "Content" section of a "Topic" was executed in the application when displayed as a "Popular Topic" in the "text"

summary. Enabling the default CSP blocked the script execution, however it was still possible to perform a malicious redirect via HTML

injection.

Impact

An attacker could use the vulnerability to inject malicious JavaScript code into the application, which would execute within the browser of any

user who views the relevant application content. The attacker-supplied code can perform a wide variety of actions, such as redirecting users to

phishing websites, overlaying custom elements on top of the legitimate application, capturing keystrokes within the application's domain.

Location

Injection Endpoints

POST https://{{Tenant}}.staged-by-discourse.com/posts

PUT https://{{Tenant}}.staged-by-discourse.com/t/{{Topic Title}}/{{Topic ID}}

Execution Endpoint

GET https://{{Tenant}}.staged-by-discourse.com/admin/email/x

Remediation

Validate and sanitize user-controlled input displayed within "text" area of the "E-mail Preview Summary". Use the HTML entity counterparts of

special characters (<>'"();%+) instead of string literals.

References

OWASP Reference: WSTG-INPV-02

Retest Observations

Remediated. Malicious HTML input entered in the post title or contents was properly escaped when output within the "E-mail Preview

Summary" functionality.

Replication Steps

With Default CSP disabled

Step 1: Authenticate to the application as a low privileged user, such as "echo.discourse". Then, create a new "Topic" with the following XSS

payload as the "Title".

14 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

<video src=x onerror=confirm('Topic')>

Step 2: Save the post and review the Initial "POST" request containing the XSS payload in the "title" parameter.

https://aspt2023t1.staged-by-discourse.com/posts

[Continued on next page]

15 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 3: With the post created, generate activity to ensure the topic will display in the "Preview Summary" area for the administrator account.

Step 4: Authenticate as an administrator, such as "alpha.discourse" and access the "Admin" >> "Emails" >> "Preview Summary" section. Then,

click the "text" option.

16 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 5: The JavaScript injected by the low privileged user is then executed.

Step 6: Review injection point.

17 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Example using the "Content" area of a post.

<video src=x onerror=confirm(\'Content\')>

Continued:

Step 7: Return to the topic and modify the "Title" to include the following XSS payload.

<video src=x onerror="$.get('/', function(d){ var t=d.substr(d.indexOf('csrf-token')+21,86);
$.ajax({type:'PUT',url:'/admin/users/3/grant_moderation',headers:{'X-Csrf-Token':t}}); });"></video>

[Continued on next page]

18 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 8: Once saved, the following "PUT" request is made, updating the value of the "Title" with the XSS payload.

https://aspt2023t1.staged-by-discourse.com/t/video-src-x-onerror-confirm-topic/34

Step 9: Confirm that the entirety of the payload was saved within the default character limits.

[Continued on next page]

19 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 10: Authenticate as an administrative user and navigate back to the "Preview Summary" section. Then, click on "text" and, while

monitoring the network traffic, note that two (2) requests are sent using XHR.

1. The JavaScript first initiates a "GET" request to the root ("/") endpoint and saves the response, allowing the value of the "csrf-token" to be

extracted.

2. A second "PUT" request containing the extracted "csrf-token" value is made to the "/admin/users/3/grant_moderation" endpoint,

escalating the attacker's role to a moderator:

Step 11: Review the groups to confirm that the user was added as a moderator.

20 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

With Default CSP enabled

Step 1: Revisit the topic as the "echo.discourse" user and enter in the following HTML payload as the topic title.

<meta http-equiv="refresh" content="2;url=https://schellman.com" />

Step 2: Authenticate as the "alpha.discourse" administrative user and visit the "text" area of the "E-mail" >> "Preview Summary" page. Observe

that the redirect to the domain specified in the meta tag was triggered.

Continued:

21 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

APP-02 Stored Cross-Site Scripting - E-mail Preview Summary (HTML)

Identifier APP-02 Impact High Category Input Validation

Attack Vector Web Application Likelihood Moderate Risk Rating Moderate

Description

The "html" section in the "Emails" >> "Preview Summary" admin page was vulnerable to stored cross-site scripting (XSS) attacks. Stored XSS

vulnerabilities arise when user input is stored and later embedded into the application's responses in an unsafe way. A JavaScript payload

saved in the name of an "Event" was executed in the application when displayed as a "Popular Topic" in the "html" summary. Enabling the

default CSP blocked the script execution, however it was still possible to perform a malicious redirect via HTML injection. The content for the

"html" section loaded within an iframe, which allowed the redirected content to be embedded into the application.

Impact

An attacker could use the vulnerability to inject malicious JavaScript code into the application, which would execute within the browser of any

user who views the relevant application content. The attacker-supplied code can perform a wide variety of actions, such as redirecting users to

phishing websites, overlaying custom elements on top of the legitimate application, capturing keystrokes within the application's domain.

Location

Injection Endpoints

POST https://{{Tenant}}.staged-by-discourse.com/posts

PUT https://{{Tenant}}.staged-by-discourse.com/t/{{Topic Title}}/{{Topic ID}}

Execution Endpoint

GET https://{{Tenant}}.staged-by-discourse.com/admin/email/preview-digest.json

Remediation

Validate and sanitize user-controlled input displayed within "html" area of the "E-mail Preview Summary". Use the HTML entity counterparts of

special characters (<>'"();%+) instead of string literals.

References

OWASP Reference: WSTG-INPV-02

Retest Observations

Remediated. Malicious HTML input entered in the event name was properly escaped when output within the "E-mail Preview Summary"

functionality.

Replication Steps

With Default CSP disabled

Step 1: As an admin user, enable the "Events" feature in "Settings" >> "Discourse Event".

22 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 2: As a low privileged user, create a new "Topic" and then click on Create event under the cog icon.

[Continued on next page]

23 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 3: Add the following XSS payload as the Event name, then click Save.

Step 4: Note that the payload was saved in the "name" field of the event. Then, click Create Topic.

24 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 5: Review the initial "POST" request containing the payload.

Step 6: Confirm that the payload was saved as the event's name. Then, generate some activity to ensure the post will display in the "Popular

Topic" area of the e-mail summary section.

25 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 7: Authenticate as an administrator, such as "alpha.discourse". Then, access the "Admin" >> "Emails" >> "Preview Summary" section,

which triggers the JavaScript.

Step 8: Review injection point.

26 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

With Default CSP enabled

Step 1: Modify the event name to include the following HTML payload.

<meta http-equiv=refresh content=2;url=https://redir3311.tunschell.com />

Step 2: As the "alpha.discourse" user, access the "Preview Summary" page. After a few seconds, the content of the iframe is redirected to the

content hosted on the malicious domain included in the payload. In this example, a malicious credential harvesting page was hosted.

Step 3: Credentials entered into the fictitious login portal were then exfiltrated back to a Schellman controlled server.

27 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

APP-03 Server-Side Request Forgery - Discourse Jira Plugin

Identifier APP-03 Impact Moderate Category Input Validation

Attack Vector Web Application Likelihood High Risk Rating Moderate

Description

An administrator could set the Discourse Jira plugin to point the Jira server to an arbitrary location. After entering an issue key or an arbitrary

path in the "Attach Issue" feature, the request failed, however the output of the response was reflected into the error logs. This vulnerability

could be used to enumerate ports on the remote host locally, as well as retrieve responses from non public-facing services, such as the

Prometheus Ruby Exporter. While the path to the issue lookup was automatically appended by the application, it was possible to use the "../"

notation to manipulate the path from the interface. Therefore, any user with the ability to add an existing issue to a POST could perform

arbitrary GET requests against the Jira API, however, only the administrator could see the output in the error logs.

Impact

A malicious administrator could use the vulnerability to enumerate the local Discourse server and internal network, and partially retrieve the

response body from forged requests performed by the back-end server. In addition, any user with the ability to attach an issue to a post could

manipulate the request path to the Jira API, allowing them to perform arbitrary GET requests using the Jira API credentials, potentially with

elevated permissions, used by the application.

Location

https://aspt2023t1.staged-by-discourse.com/admin/site_settings/discourse_jira_url

https://aspt2023t1.staged-by-discourse.com/jira/issues/attach

Remediation

Prevent administrators from entering local IP addresses or hostnames into the Jira URI setting, and prevent end-users with the ability to attach

issues from entering arbitrary paths into the "Attach Issue" feature.

References

OWASP Reference: WSTG-INPV-19

Retest Observations

Remediated. Requests to internal IP addresses were no longer executed and were instead blocked by the "SSRFDetector" functionality. In

addition, path traversals were blocked from being passed as input as the "Issue key".

Replication Steps

Step 1: As an administrator, enter an internal IP or hostname as the Jira URI, within the Discourse Jira plugin settings. Ensure also that the

"Enable verbose logging for Jira plugin" checkbox is enabled. In this instance, Schellman entered "localhost" over TCP port 3000 in cleartext:

28 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 2: Open any post, and click on the Issue button. Then, click on the Attach Issue button within the menu. Then, enter any value within the

input field for the issue key, and click the Attach Issue button:

Step 3: Within the error log, notice that the error is that of a "Not Found" error. Observe that above it, a request directed to "localhost:8080"

returned a different "connection refused" error. This output allows the administrator to iterate over all local ports and determine the ones that

are open:

29 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 4: By default, the "Attach Issue" feature appends a predefined Jira API path to the URL. This can be verified by pointing the Jira URI to an

attacker-controlled web server. Below is the request received when the issue key "123" is entered:

However, any user with the ability to attach an issue to a post which, by default, includes moderators, can manipulate the path of the request

to the Jira server. For instance, a malicious user may traverse the path to the root folder of the target server, and add a different path to the

request, using the following value as the issue key:

../../../../../status

30 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 5: After performing the request above against an attacker-controlled web server, verify that the path has been arbitrarily manipulated:

Step 6: While a malicious lower privileged user may perform arbitrary GET requests against the remote Jira server using the API credentials

passed with it, an administrator may also view the response body of the corresponding request. Verify the corresponding response for the

request can be retrieved from the error log:

31 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 7: As an administrator, these two (2) vulnerabilities can be used in conjunction to perform web requests to arbitrary paths against local or

internal hosts within the Discourse network. For instance, when pointing the Jira API URI to the TCP port 9405 on "localhost", the response body

is indicative of a Prometheus Ruby Exporter:

Step 8: Finally, a lower privileged user, such as a moderator, can perform blind GET requests against arbitrary endpoints within the legitimate

Jira server. To do so, as an administrator, enter valid information for a legitimate Jira server, including valid API credentials:

Step 9: As a moderator or any lower privileged user with the ability to attach issues, enter a known valid Jira API path, such as:

../../../../../rest/api/2/user

32 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Any other valid endpoint to the Jira API can be found at the following URL:

https://docs.atlassian.com/software/jira/docs/api/REST/9.10.0/

Step 10: After performing the requests, verify as an administrator in the Discourse error logs that they were indeed performed and returned

either data or errors from Jira, confirming the lower privileged user can perform arbitrary blind requests against the API while authenticated

with the secret credentials:

From the Jira server security logs, the arbitrary paths entered by the moderator and the successful authentication with the service account can

be verified as well:

33 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

34 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

APP-04 Stored Cross-Site Scripting - Message Encryption Plugin

Identifier APP-04 Impact High Category Input Validation

Attack Vector Web Application Likelihood Moderate Risk Rating Moderate

Description

The "Title" of an encrypted private message was vulnerable to stored cross-site scripting (XSS) attacks. Stored XSS vulnerabilities arise when

user input is stored and later embedded into the application's responses in an unsafe way. A JavaScript payload saved in the "Title" of an

encrypted message was executed in the application when the message was decrypted and read by the receiving user. Enabling the default CSP

blocked the script execution, however it was still possible to perform a malicious redirect via HTML injection.

Impact

An attacker could use the vulnerability to inject malicious JavaScript code into the application, which would execute within the browser of any

user who views the relevant application content. The attacker-supplied code can perform a wide variety of actions, such as redirecting users to

phishing websites, overlaying custom elements on top of the legitimate application, capturing keystrokes within the application's domain.

Location

Injection Endpoint

POST https://{{Tenant}}.staged-by-discourse.com/posts

Execution Endpoint

GET https://{{Tenant}}.staged-by-discourse.com/t/{{Message Title}}/{{Message ID}}

Remediation

Validate and sanitize user-controlled input displayed within "Title" of an encrypted private message. Use the HTML entity counterparts of

special characters (<>'"();%+) instead of string literals.

References

OWASP Reference: WSTG-INPV-02

Retest Observations

Remediated. Malicious HTML input entered in the message title was properly escaped when output within the message viewing functionality.

Replication Steps

With Default CSP disabled

Step 1: Enable message encryption by clicking on the Enable Encrypted Messages button via "Preferences" >> "Security".

35 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 2: Start a new message. This is from the perspective of a low privileged user "echo.discourse" sending a message to an administrator

"alpha.discourse". Include the following XSS payload in the message title and click the Message button to send it.

36 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 3: Observe that the message title was encrypted in the following "POST" request.

https://aspt2023t1.staged-by-discourse.com/posts

Step 4: Authenticate as the administrative user "alpha.discourse" and click on the encrypted message.

37 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 5: Once the message loads and is decrypted, the JavaScript executes.

Step 6: Review the injection point.

[Continued on next page]

38 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

With Default CSP enabled

Step 1: Send another message and include the following HTML payload.

<meta http-equiv="refresh" content="2;url=https://schellman.com" />

Step 2: As the "alpha.discourse" user, access the encrypted message sent from "echo.discourse".

[Continued on next page]

39 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

Step 3: Once the message is loaded, the HTML triggers the redirect.

Continued:

40 I S S U E S I D E N T I F I E D P R O P R I E T A R Y & C O N F I D E N T I A L

www.schellman.com / info@schellman.com / 1.866.254.0000
Outside of the United States, please dial: +1.813.288.8833

PROPRIETARY & CONFIDENTIAL

UNAUTHORIZED USE, REPRODUCTION OR DISTRIBUTION OF THIS REPORT, IN WHOLE OR IN PART, IS STRICTLY PROHIBITED

41

	Executive Summary  
	Executive Summary
	Prepared For
	Summary Table
	Assumptions & Limitations

	Assessment Scope  
	Assessment Scope
	External Network
	Web Application
	Web Application Credentials

	Methodology  
	Methodology
	External Network
	Web Application

	Assessment Results  
	Attack Path Narrative
	External Network
	Web Application

	Risk Ratings
	How Risk is Calculated
	Likelihood and Impact Explained
	Likelihood - The probability the vulnerability can be exploited, considering the attacker’s skill level and access.
	Impact – The potential harm done to the organization based on the vulnerability.

	Issues Identified
	Summary Table
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps

	 

